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A fracture test using concentrically loaded 
square plates 

K. M. ENTWISTLE 
University of Manchester/UMIST, Materials Science Centre, Manchester M1 7HS, UK 

A fracture test is described in which square plates are supported near their corners and 
loaded concentrically. The maximum tensile stress occurs on the loading circle but 
appreciable tensile stresses exist at the mid-point of the plate edges. To minimize premature 
fracture here, due to edge damage in the plate, it is desirable to reduce the ratio edge 
stress: maximum stress in the plate. This can be achieved by moving the points of support 
inwards from the plate corners to the plate centre. A justification is presented for positioning 
the supports on a circle of diameter ds, where dJ2a=0.85 and 2a is the length of the 
side of the plate. Loading diameters dM of values dJ2a=0.25 and d~/2a=O.075 are 
recommended. If the plates are thin conditions can be geometrically non-linear at the 
fracture load. In these circumstances membrane stresses develop in addition to the 
pure bending of the linear regime. Calculation of the relation between the load and 
the stresses in the plate must then be carried out, for example by the finite element 
method, for the specific conditions given in the test. However, this paper demonstrates 
that there is a useful range of conditions under which geometrical linearity persists up 
to the point of fracture. Under these circumstances it is shown that it is possible to generalize 
the relationship between the applied load at fracture and the plate stress distribution. 
This permits the fracture stress to be determined from the fracture load. The procedure 
for doing this is set out. It is also shown how, from the fracture load of the pFate, the 
loading geometry and the elastic constants of the material can be established if it is 
permissible to use the linear solution to analyse the test. It is felt that this procedure might be 
helpful where there is no access to either finite element packages or to finite element 
expertise. The finite element packages used in the work now described in this paper are 
ABAQUS and LUSAS. 

1. Introduction 
It has been demonstrated [1,21 that useful fracture 
data on brittle materials can be secured by applying 
concentric loading to specimens in the form of square 
plates. The loading arrangement is illustrated in 
Fig. 1. The plate is supported near each corner by 
spheres resting in orthogonal "V" grooves in a sub- 
stantial metal plate. The spheres rotate freely in the 
radial direction and in consequence the supports im- 
pose little constraint to the radial movements of the 
plate associated with its deformation under load. The 
load is applied through a neoprene o-ring which car- 
ries a plate with a sphere at its centre. This arrange- 
ment ensures that the load is uniformly distributed 
round the circumference of the o-ring. This testing 
arrangement has been used to obtain fracture data for 
alumina [1] and float glass [2]. 

The objective of this paper is to provide data, for 
those who wish to use this loading system for fracture 
studies, that relates the measured fracture load to the 
stresses in the plate at the location of the fracture 
origin. This is not a straightforward exercise because 
conditions are encountered in thin plates which are 
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geometrically non-linear. This is the case when the 
deflection at the plate centre becomes comparable 
with the plate thickness. Under these circumstances 
the pure bending stresses that arise when the deflec- 
tions are small have membrane stresses superimposed 
upon them. In this regime the relation between ap- 
plied load and stresses in the plate becomes a complex 
function of plate geometry. It is unrealistic to hope to 
generalize the load-stress relations under these condi- 
tions and in practice it is necessary to perform calcu- 
lations, commonly by the finite element method, for 
the specific conditions of individual cases. In contrast, 
however, if the conditions are geometrically linear 
useful generalizations can be made, as will be demon- 
strated, which permit measured fracture loads to be 
related to fracture stress provided that the tests are 
carried out in the geometrically linear regime. It is 
shown that it is possible to establish, for a particular 
loading geometry and material, if the conditions will 
be geometrically linear up to the point of fracture and 
if, therefore, the data provided here can be used with 
confidence to deduce the fracture stress. It turns out 
that geometrically linear conditions exist over a useful 
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Figure 1 Diagram showing the supporting and loading arrange- 
ments for the plate. A is a neoprene o-ring. The supports are shown 
at the extreme corners of the plate. They are moved radially towards 
the plate centre for fracture stress measurement. 

(a) 

range of testing parameters. So it is hoped that the 
data now provided will be helpful to those who do not 
have access to finite element expertise or to finite 
element packages but who wish to use the testing 
system now described for fracture measurements. Ad- 
ditionally, the data may be of interest to those con- 
cerned with stresses in and deflection of concentrically 
loaded square plates in other contexts. 

2. A comparison between the measured 
and the calculated stresses and 
deflections in loaded plates 

The stresses and deflections in the loaded plates were 
calculated by the finite element method. The 
ABAQUS and the LUSAS packages were used. The 
element meshes for a quarter of the plate are illus- 
trated in Fig. 2 for the LUSAS case; the ABAQUS 
meshes were the same as those illustrated in Ref. [1]. 
Geometrically linear solutions were obtained using 
both LUSAS and ABAQUS, and showed excellent 
agreement. All the geometrically non-linear calcu- 
lations were carried out with ABAQUS. 

Since the finite element method yields approximate 
solutions, it is desirable to gauge the level of approxi- 
mation by comparing the solutions with directly 
measured values. Such a comparison has already been 
published for the geometrically non-linear deforma- 
tion of loaded thin alumina plates Ell. The agreement 
between the measured and the calculated values gen- 
erated confidence in the finite element data. 

The comparison is now extended to measurements 
in the linear region on an aluminium alloy plate 
254mm square and 9.82mm thick. The corner sup- 
ports lay on a circle 350mm in diameter, with the 
centre of the support circle coincident with the centre 
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(b) 

Figure 2 The LUSAS meshes for stress and displacement analysis. 
The mesh for a quarter of the plate is drawn. (a) The mesh for 
a loading circle diameter of dl/2a = 0.075; (b) the mesh for a load- 
ing circle diameter of dl/2a = 0.25; 2a is the length of the side of the 
plate. 

of the plate. This places the corner supports 4.6 mm 
from the plate corners. Stress measurements were 
made with foil strain gauges with a gauge length of 
1 mm at points on the lower (tensile) surface of the 
plate defined in Fig. 3. Stresses were derived from 
strains measured at a load of 1000 N, which produced 
a deflection at the centre of the plate of <0.4mm, 
which is ca. 4% of the plate thickness. It is revealed 
later that this is well within the geometrically linear 
range. 

In order to translate the measured strains into stress 
(and for the finite element calculations) a value for 
Young's modulus and for Poisson's ratio are required. 
The plate was made of duralumin (A1; 4.4wt % Cu; 
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Figure 3 Diagram showing the location of the points on the lower 
surface of the 2 5 4 m m  square duralumin plate at which the stress 
was measured. The coordinates of the points are: C (the plate centre) 
(0, 0); A (46.0, 0); A' (65.0, 0); B (32.5, 32.5); B' (46.0, 46.0), where the 
dimensions are in mm. The four points S are the supports.  

measured by Bradfield. The former values are used to 
analyse the data now described. 

Table II gathers together the calculated and the 
measured stresses at the five locations defined in 
Fig. 3. The stresses are the radial stress (%r) and the 
circumferential stress (~00) which, because all the 
measurement points lie on lines of symmetry, are 
principal stresses. Table II gives data for two loading 
circle diameters: one of 19mm, corresponding to 
d~/2a = 0.075 and one of 63:5 mm diameter, corres- 
ponding to d~/2a = 0.25. The diameter of the loading 
circle is d~ and 2a is the length of the side of the plate. 
Two sets of calculated stresses are listed, one using the 
ABAQUS package and the other the LUSAS package. 
The data for both loading circles show very satisfac- 
tory agreement between the measured and the cal- 
culated values and between the two sets of calculated 
stresses. The average difference between the measured 
and calculated stresses is ca. 4%. This level of agree- 
ment, coupled with the measurements on alumina 
plates previously reported [1], supports the con- 
clusion that both the ABAQUS and the LUSAS pack- 
ages, using the meshes described, give an adequate 
prediction of the stress distribution in the concentri- 
cally loaded square plates that are of concern here. 

T A B L E  I Deflection at the centre of a 254mm square plate, 
9 .82mm thick, loaded on a 19 m m  diameter circle and supported at 
four points 4.6 m m  from the plate corners: load, 1000 N 

E = 7 1 5 0 0 N m m  -2 
Measured deflection at centre 
Calculated by LUSAS 
Calculated by ABAQUS 

v = 0.33 
0.356mm 
0.357 m m  
0.360mm 

1.0wt% Mg; 0.75wt% Mn; 0 .4wt% Si). Table I 
shows that good agreement is obtained between the 
measured plate deflection and calculated values from 
two finite element packages using E = 71 500 N m m -2  
and v = 0.33. These values are very close to pub- 
lished values of E = 70 500 N mm-2  and v = 0.35 [3] 

3. R e c o m m e n d e d  g e o m e t r y  for the 
fracture test  

If the square plate is supported at its extreme corners, 
the tensile stress in the middle of the edge of the plate 
is over 80% of the maximum stress in the plate for 
dl/2a = 0.25. All ceramic plates are likely to have some 
edge damage so, under this loading geometry, fracture 
is likely to be nucleated at the plate edge, rather than 
in the body of the plate. Fortunately, the probability 
of edge fracture can be reduced to an acceptable level 
by moving the corner supports radially inwards to- 
wards the plate centre. This reduces the ratio of the 
maximum tensile edge stress to the overall maximum 
tensile stress in the plate. 

Table III lists this stress ratio for two loading circle 
diameters dl/2a = 0.25 and 0.075, and for four values 

T A B L E  II Stresses in the radial and circumferential directions at locations defined in Fig. 3 in a 254mm square duralumin plate, 9 .82mm 
thick, supported at four points lying on a circle 350mm diameter. Load, 1000N; E, 71 5 0 0 N m m  2; v, 0.33; stresses in N m m  -2 

Location Measured stress Calculated stress - A B A Q U S  Calculated stress - LUSAS 

O'rr r I[Yrr (~0O O~rr (3"00 

Loading circle diameter 19 mm (d~/2a=O.075) 

Centre 22.90 22.90 
A 9.75 14.54 
B 11.73 13.21 
A' 7.79 13.04 
B' 9.37 10.28 

Loading circle diameter 63.5 mm (dl/2a=0.25) 

Centre 14.91 14.93 
A 9.62 13.39 
B 12.19 12.97 
A' 7.29 12.23 
B' 9.52 9.96 

22.27 22.27 22.29 22.29 
9.72 14.25 9.65 14.00 

10.96 12.79 10.98 12.92 
6.62 12.67 6.84 12.48 
9.20 9.84 9.13 10.15 

14.25 14.25 14.25 14.25 
10.27 13.40 10.31 13.22 
11.98 12.26 11.65 12.29 
6.97 12.23 7.10 12.04 
9.35 9.35 9A3 9.72 
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T A B L E  I I I  Ratio of max imum edge stress to the max i mum stress 
in the plate for different corner support  positions (ds/2a) and for two 
loading circle diameters (dl/2a) 

dt/2a Diameter of corner support  circle (d~/2a) 

1.378 1.000 0.85 0.70 

0.075 0.545 0.400 0.315 0.225 
0.250 0.819 0.656 0.550 0.417 

of the diameter of the circle on which the four supports 
lie, ds, expressed in terms of the length of the side of the 
plate, 2a. 

Experience with glass plates [2] has shown that if 
the ratio of edge stress to maximum stress is ca. 0.5 
a statistically acceptable proportion of a batch of 
plates will fail at locations away from the plate edge. 
Table I l l  shows that for dl/2a = 0.25 (the more critical 
case) a value Of ds/2a = 0.85 achieves this value. With 
this support position and a loading ring diameter of 
dl/2a = 0.075 the stress ratio is 0.315, so edge fracture 
is much less likely. 

It is therefore recommended that, for fracture test- 
ing, the square plates be supported at four points lying 
on a circle of diameter equal to 0.85 times the length of 
the side of the plate. 

Loading circle diameters of dl/2a = 0.25 and 0.075 
are convenient values, and data for fracture with these 
loading circle sizes can be used to assess the effect of 
stressed volume on the average fracture stress. Data 
are given later that relate the load to the tensile stress 
distribution for these experimental conditions. 

4. Def in ing the  range of geometr ica l  
l ineari ty 

Fig. 4 illustrates the geometrically non-linear behav- 
iour in the plate. It shows how the stresses at the 
centre of the plate on the bottom (tensile) and top 
(compressive) faces vary with applied load. The centre 
stress is quite close to the maximum stress in the plate. 
For  comparison the linear solution is graphed. 
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Figure 4 The calculated variation with applied load of the stresses 
on the lower (R) and upper (O) surface of the plate. �9 and �9 are 
values taking account of geometrical non-linearity; A, linear solu- 
tion. Calculated for a plate 254 m m  square, thickness 2.62 ram, with 
dl/2a = 0.25 and d~/2a = 1.378; E = 71 5 0 0 N m m - 2 ;  v = 0.33. 
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Two features of Fig. 4 call for comment. The first is 
that the compressive stress on the upper plate surface 
falls increasingly below the tensile stress on the lower 
surface as the applied load increases and the plate 
deflection becomes larger. So conditions steadily di- 
verge from pure bending and a tensile membrane 
stress develops. The second feature is that the tensile 
stress keeps close to the values given by the geomet- 
rically linear solution, well above the load at which the 
non-linear tensile and compressive stresses have be- 
gun to diverge significantly. Since compressive stresses 
contribute little to fracture probability they can be 
ignored in fracture analysis. We need to take account 
only of tensile stresses, and since fracture is initiated 
generally at the plate surface it is the surface tensile 
stresses that dominate fracture behaviour. 

It is judged that, for analysis of the fracture test, 
a reasonable upper limit for the error in the tensile 
stress would be 2%. By this criterion it would be 
acceptable to use the linear finite element solution for 
the stress in the plate if the difference between the 
predictions of the linear and the non-linear analysis 
for the surface tensile stresses did not exceed 2%. That 
limit is indicated, as an example, in Fig. 4 and corres- 
ponds to a deflection at the centre of the plate (8c) of 
8o/t = 1.07, where t is the plate thickness. 

Timoshenko and Woinowsky-Krieger E4] give 
a simple and effective illustration of the source of 
geometrical non-linearity by considering the bending 
of a circular plate by a constant edge moment (see 
Fig. 5). The plate has a thickness t and an initial plan 
radius r. The edge moment deflects the plate into the 
cap of a sphere of radius of curvature R and central 
deflection 8. If the neutral plane is to be unchanged in 
length, as it would be in pure bending, the radius of 
a thin ring of material at the edge of the plate must be 
reduced from r to r'. The fractional reduction of the 
circumferential length of the ring will be the same as 
the fractional reduction of r, so a compressive hoop 
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Figure 5 Diagram illustrating the development of membrane  
strains in the bending of a circular plate. 



strain will be generated in the disc edge which will be 
a membrane strain, a~ = (r - r'/r). The maximum bend- 
ing strain superimposed on this will be eb = t/2R. 

An analysis of the geometry of Fig. 5 leads to the 
conclusion that 

gm 2~ 

~b 3 t 

The development of E m is a consequence of the ge o- 
metrical non-linearity and is seen to depend on the 
ratio 6It. 

In practice, elastic strains will cause the neutral axis 
to change its length so (2/3)(6/0 overestimates the mem- 
brane strain. But the analysis leads to the conclusion 
that the onset of significant membrane stress, i.e. the 
onset of geometrical non-linearity, will be related to 
the value of 6o/t for the plate. So a wider exploration 
has been made of the effect of the loading geometry of 
the concentrically loaded plates on the value of 6o/t at 
which the linear and non-linear solutions for the ten- 
sile stress at the centre of the plate differ by 2%. 

Fig. 6 summarizes the results. It records the result of 
finite element calculations on an aluminium alloy 
plate 2.62mm thick, 254mm square with a loading 
circle diameter of 63:5mm (corresponding to 
d~/2a = 0.25) for a range of corner support positions. 
Plotted are the values of the central deflection of the 
plate, for a range of values of d~/2a, at which the linear 
solution for the tensile stress at the centre of the plate 
exceeds the non-linear solution by 2%. That deflection 
becomes smaller as the points of support move in- 
wards towards the plate centre. For  the support posi- 
tions recommended for fracture testing, ds/2a = 0.85, 
the value of 6o/t at the 2% limit is 0.51. This leads to 
the recommendation that, provided the linear finite 
element solution gives a deflection at the centre of the 
plate less than half the plate thickness, the linear 
solution can be used to analyse fracture tests. Data for 
dl/2a = 0.075 in the region of d~/2a = 0.85 are also 
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Figure 6 Plots showing the values of the deflection at the centre of 
the plate, normalized on the plate thickness, at which the difference 
between the linear and the geometrically non-linear solutions for 
the stress at the centre reaches 2%. Values are shown as a function 
of the position of the plate supports (ds/2a) and for two values of the 
loading circle diameter (dl/2a). Calculations were carried out for 
a plate 254mm square and 2.62 mm thick; with E = 71 500Nmm -2 
and v = 0.33. The single point x is for a plate 100mm square and 
1.0 mm thick with E = 306 000 N m m -  2 and v = 0.25, and a loading 
circle diameter of 25.0ram. d~/2a: 0, 0.25; II, 0.075; x,  0.25. 

plotted. Conditions for this loading circle diameter are 
seen to be less critical. Sc/t is seen to be nearly 0.6 at 
the 2% limit. 

It is assumed that, following the Timoshenko indi- 
cator, the geometric linearity limit depends only on 
6~/t, irrespective of the elastic constants of the mater- 
ial. Support for this stance is given by a single calcu- 
lation for an alumina plate (E ca. five times that of 
aluminium and v = 0.25) i mm thick with dl/2a = 0.25 
and ds/2a = 1.41. The value of 8r for this case is seen 
to fall close to the curve in Fig. 6 for aluminium plates. 
It is therefore concluded that Fig. 6 can be used for all 
plates irrespective of elastic constants. 

In order to apply the criterion ~c ~< 0.5 for the 
validity of the linear solution for the load-stress rela- 
tion, it is necessary to be able to calculate what the 
central deflection will be with a particular material 
and for a particular loading geometry. The means of 
achieving this end is presented in the next section. 

5. Results of the linear analysis of the 
plate stresses and deflections 

The conditions at the centre of the plate are concen- 
trated on, where the stresses are very close to the 
maximum stress in the plate which occurs on the 
loading circle and therefore close to the stress at the 
point at which fracture is nucleated. 

For  geometrically linear conditions, the stresses are 
pure bending throughout the.plate (neglecting shear 
stresses) and, at the centre, the moment per unit length 
is independent of the elastic modulus and the plate 
thickness; it varies slightly with Poisson's ratio, v. For  
a particular value of v, the centre moment/unit  length 
is given by 

Mo = AP 

where P is the applied load. The maximum tensile 
stress at the plate centre is then given by 

Mc(t/2) 
( ~ c  - -  - -  I 

where t is the plate thickness and I, the second mo- 
ment of area per unit width of the plate, is 

t 3 
I = - -  

12 

So 

6Mo 
(3- c - -  t2 

The value of A depends on the loading geometry, i.e. 
d~/2a and d~/2a. Fig. 7 shows how the centre mo- 
ment/unit length/unit load (A) varies with the loading 
ring diameter for a particular corner support location. 

Table IV lists values of A calculated by finite ele- 
ment analysis for v = 0.25 and 0.33. A is dimensionless 
(its units are N m m m m  -1 N - l ) .  

The data in Table IV make it possible to predict the 
load required to generate a particular stress at the 
centre of the plate given the plate thickness and load- 
ing geometry. If the selected stress is the estimated 
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Figure 7 Graph showing the variation of moment at the centre of 
a plate with loading ring diameter. These are measured values. The 
tests were carried out on a duralumin plate 254mm square and 
9.82mm thick with supports at d~/2a = 1.378. 

T A B L E  IV Values of A in the relation Mo = AP for two values of 
Poisson's ratio and for selected values of loading ring diameter and 

support positions 

da/2a ds/2a A 

v = 0.25 v = 0.33 

0.25 

0.075 

1.414 0.228 0.234 
1.000 0.164 0.171 
0.850 0.140 0.146 
0.700 0.114 0.120 

1.414 0.350 0.364 
1.000 0.286 0.300 
0.850 0.261 0.275 
0.700 0.236 0.248 

fracture stress of the plate material then the calculated 
load will be close to the fracture load of the plate 
because the centre stress is close to the maximum 
stress in the plate. 

It  is then necessary to judge if this load will produce 
plate deflections within the geometrically linear re- 
gime so that the linear solution for the load-stress 
relationship can be used to find the fracture stress 
from the fracture load. The following data give that 
information. 

The general theory of plate bending [4] suggests 
that the central deflection of a loaded plate will be 
given by 

8~ = k pa2(1 - -  V 2 )  

Et 3 (1) 

where 2a is the length of the side of the square plate, 
and k will depend o'n the loading and supporting 
geometry. Values of k for a range of geometries are 
listed in Table V. 

The value of the central deflection of the plate, 8~, 
produced by an estimated or measured fracture load 
P can be obtained by selecting the appropriate  value 
of k from Table V and substituting it in Equation 1 for 
8~ together with the plate dimensions and the elastic 
constants. If the value of 8o/t turns out to be less than 

T A B L E  V Values of k in the relation 8c = kPaa(1 - v2)/Et 3 for 
selected values of loading ring diameter and support positions 

dl/2a ds/2a k dl/2a ds/2a k 

0.25 1.414 1.730 0.075 1.414 1.883 
1.000 0.585 1.000 0.656 
0.850 0.368 0.850 0.430 
0.700 0.213 0.700 0.268 

0.5 then the linear solution can be used to determine 
the fracture stress from the fracture load P. 

6. An example of the application of 
the data 

The aim is to establish if it is legitimate to use the 
results of the linear analysis to calculate the fracture 
stress from the fracture load in the following circum- 
stances. 

The specimens are glass plates 100mm square and 
3.5 m m  thick. The elastic modulus is 70 G N  m -  2 and 
Poisson's ratio is 0.22. The support  points lie on 
a circle 85 m m  in diameter, so d~/2a = 0.85. The more 
critical case of the largest loading circle diameter is 
taken. This is 25 m m  so dl/2a = 0.25. The estimated 
fracture stress is 1 5 0 N m m  -2. The centre moment  
needed to generate this stress at the centre of the plate 
on the lower surface is 

Mo - 

cyot 2 150 X 3.52 

6 6 
- 306.25 N m m m m  -1 

From Table IV, the appropriate  value of A is 0.138, so 
the load needed to generate Mc is 

Mc 306.26 
P . . . .  2219N 

A 0.138 

The central deflection produced by this load is 

pa2(1 - v 2) 
8c = k 

Et 3 

From Table V, k = 0.368, so 

0.368 x 2219 x 502(1 - 0.222) 
8c = mm 

70 000 x 3.53 

= 0.647 m m  

and 

8o 0.647 
- - -  - 0.185 

t 3.5 

This is below the critical value of 0.5, so the linear 
analysis can be used for this test condition. 

7. The distribution of the maximum 
tensile principal stress on the lower 
plate surface in the linear regime 

Figs 8 and 9 give the radial distribution for plates 
100mm square of the maximum moment/unit  
length/unit load (A) for directions 0, 15, 30 and 45 ~ 
from the line joining the mid-point of the opposite 
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zero. dl/2a = 0.25, dj2a = 0.85. 
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Figure 9 As for Fig. 8 with di/'2a = 0.075. 

sides of the plate. So, 45 ~ is the direction of a plate 
diagonal joining opposite plate corners. The data are 
for dl/2a = 0.25 and 0.075, and for ds/2a = 0.85, which 
is the recommended corner-support position for frac- 
ture testing. The calculations used a value for Pois- 
son's ratio of 0.25. Table V1 tabulates the data for 
easier reference. 

For  general interest, Figs 10 and 11 show compara- 
ble data for ds/2a = 1.334, i.e. for conditions where the 
corner supports are quite close to the plate corners, 
and Figs 12 and 13 are contour plots of the distribu- 
tion of moment/unit  length/unit load (A) over a quar- 
ter of the plate for ds/2a = 0.85. 

To determine the fracture stress at the fracture ori- 
gin from the measured fracture load, Pr, first locate the 
polar coordinates of the fracture origin (r, 0), where r is 

T A B L E  VI Values of the max imum moment /uni t  length/unit 
load (A) at the point (r/2a, 0) 

r/2a A 

0 = 0 0 = 15 ~ 0 = 30 ~ 0 = 45 ~ 

4 / 2 a = 0 . 2 5 ; v  = 0.25 

0 0.1401 0.1401 0.1401 0,1401 
0.025 0.1403 0.1403 0.1403 0.1402 
0.05 0.1406 0.1409 0.1408 0.14'08 
0.075 0.1413 0.1418 0.1416 0.1414 
0.10 0.1417 0.1439 0.1420 0.1423 
0.125 0.1421 0.1422 0.1426 0,1427 
0,135 0.1410 0.1379 0.1372 0.1349 
0.14 0.1375 0.1358 0.1342 0.1319 
0.15 0.1362 0.1320 0.1292 0.1267 
0.16 0.1330 0.1285 0.1251 0.1217 
0.17 0.1298 0.1251 0.1211 0.1169 
0.18 0.1264 0.1220 0.1170 0.1123 
0.19 0.1230 0.1189 0.1130 0,1079 
0.20 0,1205 0.1159 0,1091 0.1026 
0.225 0.1141 0.1122 0.0986 0.0910 
0.25 0.1085 0.1009 0.0885 0.0785 
0.275 0.1024 0.0943 0,0805 0.0662 
0.30 0.0972 0.0882 0.0730 0.0540 
0.325 0.0926 0.0823 0.0656 0.0405 
0.35 0.0885 0.0772 0.0560 0.0255 
0.40 0.0819 0.0687 0.0462 
0.45 0.0773 0.0626 0.0341 T 
0.50 0.0750 0.0575 0.0240 Negative 
0.515 0.0559 moment  
0.577 0.0128 

~/2a=O.O75;v = 0.25 

0 0.2615 0.2615 0.2615 0.2615 
0.01 0.2615 0.2615 0.2616 0.2616 
0.02 0.2616 0.2621 0.2620 0.2619 
0.03 0.2619 0.2636 0.2665 0.2614 
0.035 0.2597 0.2605 0.2625 0.2593 
0.04 0.2550 0.2550 0.2550 0.2545 
0.05 0.2450 0.2400 0.2400 0.2460 
0.06 0.2325 0.2265 0.2265 0.2310 
0.07 0.2215 0.2150 0,2150 0.2185 
0.08 0.2115 0.2045 0.2045 0.2075 
0.09 0.2010 0.1940 0.1940 0.1965 
0A0 0.1920 0.1850 0.1850 0.1865 
0.125 0.1720 0.1655 0.1655 0.1655 
0.15 0.1550 0.1495 0.1495 0.1470 
0.175 0.1425 0.1360 0.1360 0.1300 
0.20 0.1320 0.1245 0.1245 0.1140 
0.25 0.1160 0.1080 0.0980 0.0890 
0.30 0.1035 0.0940 0.0790 0.0600 
0.35 0.0930 0.0805 0.0625 0.0258 
0.40 0.0855 0.0710 0.0480 
0.45 0.0800 0.0635 0.0345 T 
0.50 0.0785 Negative 
0.518 0.0568 moments  
0.53 0.0217 

the distance from the centre of the plate and 0 is the 
angle measured from the nearest line joining the mid- 
point of opposite sides of the plate. Express r in terms 
of the plate side length 2a, r/2a, and from Table VI 
establish, by linear interpolation, the value A r of the 
moment/unit  load/unit length (A) at that point. The 
fracture stress will be given by 

6AfPf 
~ r  = t2 

where t is the plate thickness. 
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Figure 10 As for Fig. 8 but with the corner supports near the plate 
corner, d,/2a = 1.334 and dl/2a = 0.25. 
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Figure 11 As for Fig. 10 but with dl/2a = 0.075. 

The  d a t a  in Table  VI are ca lcu la ted  for a value of  
Po i s son ' s  ra t io  of 0.25. An  adequa te  cor rec t ion  for 
a different value of  v can be secured by  assuming  tha t  
the effect .of Po i s son ' s  ra t io  on the stress de t e rmined  
by  the p rocedu re  now descr ibed  is p r o p o r t i o n a l l y  the 
same as the  effect on A (which is p r o p o r t i o n a l  to the 
centre  stress) in Tab le  IV. 

The  fol lowing example  i l lustrates  the p rocedu re  for 
the de t e rmina t i on  of the f racture  stress. The  specimen 
is a square  pla te  with a side length  (2a) of 150 m m  and  
thickness  3 ram; it f rac tured  at  a l oad  of  1605 N, and  
the f racture  or igin lay at  r = 19.5 m m  and  (} = 20 ~ 
The  load ing  d iamete r  was 37.5 ram, co r r e spond ing  to 
dl/2a = 0.25; r/2a = 19.5/150 = 0.130. F r o m  Tab le  VI, 
i n t e rpo la t i on  be tween r/2a = 0.125 and  r/2a = 0.135 
and  be tween 0 = 15 ~ and  0 = 30 ~ gives Af = 0.140. 
The  bend ing  m o m e n t / u n i t  length  at  the fracture or igin 
was therefore  

M e = 0 . 1 4 0  x 1605 = 2 2 4 . 7 N m m m m - 1  
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Figure 12 A contour plot of the variation over a quarter of the plate 
of the maximum bending moment. The contours connect points of 
constant bending moment/unit width/unit load (A). The arrows 
indicate the loading ring position and X is a support point. 
d~/2a = 0.25 and d~/2a = 0.85. Contour values: A, 0; B, 0.01; C, 0.02; 
D, 0.03; E; 0.04; F, 0.05; G, 0.06; H, 0.07; I, 0.08; J, 0.09; K, 0.10; 
L, 0.11; M, 0.12; N, 0.13; O, 0.14; P, 0.15. 
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Figure 13 As for Fig. 12 but with d~/2a = 0.075. Contour values: A, 
0.01295; B, 0.06477; C, 0.02590; D, 0.04533; E, 0.06476; F, 0.08419; 
G, 0.1036; H, 0,1230; I, 0.1425; J, 0.1619; K, 0.1813; L, 0.2008; M, 
0.2202; N, 0.2396; O, 0.2590. 

and  the co r r e spond ing  surface tensile stress at  tha t  
po in t  was 

6 x 224.7 
~ f -  3 ~  - 1 4 9 . 8 N m m - 2  

which is the fracture stress for the plate.  

8. T h e  e f f e c t  o f  s t r e s s e d  v o l u m e  o n  t h e  
a v e r a g e  f r a c t u r e  s t r e s s  

An advan t age  of  the concent r ic  load ing  a r r angemen t  
is tha t  the effective stressed vo lume of the pla te  is 



easily changed by changing the diameter of the load- 
ing circle. It is helpful to know the effective stressed 
volume for plates loaded in this manner in order, for 
example, to explore if Weibull statistics predict ob- 
served volume dependence. It has been demonstrated 
[1] that since fracture is initiated at the tensile stressed 
surface, the effective surface area is an acceptable 
alternative to effective volume. 

The effective area of this tensile face, AA2 , is defined 
as: AA2 = KA2Ao, where Ao is the total area of this 
face of the plate ( = (2a)2), and 

T A B L E  V I I I  The effect of shear on the centre deflection and the 
centre moment of concentrically loaded plates of different thickness; 
d~/2a, 0.85; dl/2a, 0.25; E, 360GNm-2;  v, 0.25 

Plate 8~ with shear Mc with shear 
thickness 
(mm) 8c with shear ignored Mc with shear ignored 

1 1.000 0.997 
6 1.041 1.000 

10 1.113 1.000 
15 1.254 1.006 
20 1.500 1.008 

,=1\ csp ] Ao 

where oh1 and ~i2 are the two principal stresses in the 
plane of the plate at the ith Gauss point, and o v is the 
maximum tensile principal stress in the whole plate; 
m is the Weibull modulus. AAi is the area associated 
with the ith Gauss point and is obtained by dividing 
the area of the element in which the Gauss point is 
located by the number of Gauss points in the element. 
Values of KA2 a r e  tabulated in Table VII for 
dt/2a = 0.075 and 0.25, and for d~/2a = 0.85 - the 
support position recommended for fracture testing. 
Geometrical linearity has been assumed and data are 
presented for two values of Poisson's ratio, 0.25 and 
0.33. The values are independent of the elastic 
modulus of the material. 

It is worth noting that the values of KA2 a r e  very 
sensitive to the precision with which the peak stress in 
the plate, %,  is determined. For  example, a 3% error 

/71 in % produces a 55.8% error in cyp when m = 15 and 
will change KA2 by 55.8%. 

T A B L E  VII  Values of KA2 in the relation AA2 = KA2A0, where 
A0 is the total area of the lower face of the plate and AAz is the 
effective area. Calculated for support positions dj2a = 0.85 and for 
two values of Poisson's ratio. Assumes geometrical linearity 

8.1. The effect of shear stresses 
As the thickness of the plate increases relative to the 
plate side length, shear stresses develop which are 
distributed parabolically across the plate thickness 
and are zero at the plate surfaces. 

The plate thickness at which shear stresses begin to 
have an effect on the centre moments and the centre 
deflection of loaded plates was investigated using the 
ABAQUS package. Table VIII lists the ratio of the 
central deflection to that with shear ignored and cor- 
respondingly for the centre moment/unit  length/unit 
load (A). 

The calculations were carried out for a plate 
100 mm square with a 25 mm loading circle and sup- 
ported at points lying On a circle 85 mm in diameter, 
corresponding to ds/2a = 0.85. The value of E was 
360 GN m -  2 and v was 0.25. The load was 200 N, but for 
this linear case the ratios will be independent of load. 

So, for the loading configuration recommended 
for fracture testing, the effect of shear on the centre 
moments, and therefore on the tensile stresses in the 
central region of the plate, can be ignored for values of 
the plate thickness less than 1/5 of the length of the 
side of the plate. In contrast, significant effects of shear 
on the deflection arise if the plate thickness exceeds 
1/20 of the length of the side of the plate. 

Weibull modulus, m KA2 

dj2a=0.25 

4.5 
5.0 
5.5 
6.0 
6.5 
7.0 
7.5 

10.0 
12.5 
15.0 

d~/2a=O.075 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 
7.5 

10.0 
12.5 
15.0 

v = 0.25 v = 0.33 

0.162 0.152 
0.146 0.138 
0.133 0.126 
0.i22 0.116 
0.113 0.108 
0.105 0.101 
0.0978 0.0943 
0.0730 0.0715 
0.0572 0.0567 
0.0461 0.0461 

0.0338 0.0315 
0.0286 0.0267 
0.0247 0.0232 
0.0217 0.0204 
0.0194 0.0183 
0.0175 0.0166 
0.0160 0.0152 
0.0112 0.0107 
0.00861 0.00832 
0.00696 0.00677 
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